Методы прогнозирования трудовых ресурсов

Таким образом, при прогнозировании исходят из простого предположения, что следующий во времени показатель по своей величине будет равен средней, рассчитанной за последний интервал времени.

В разных методиках прогнозирования процесс настройки (адаптации) модели осуществляется по-разному, и можно выделить:

) метод скользящей средней (адаптивной фильтрации, метод Бонса-Дженкинса);

) метод экспоненциального сглаживания (методы Хольда, Брауна, экспоненциальной средней).

Скользящие средние представляют собой средние уровни за определенные периоды времени путем последовательного передвижения начала периода на единицу времени.

Необходимость применения скользящей средней вызывается следующими обстоятельствами. Бывают случаи, когда имеющиеся данные динамического ряда не позволяют обнаруживать какую-либо тенденцию развития (тренд) того или иного процесса (из-за случайных и периодических колебаний исходных данных). В таких случаях для лучшего выявления тенденции прибегают к методу скользящей средней.

Метод скользящей средней состоит в замене фактических уровней динамического ряда расчетными, имеющими значительно меньшую колеблемость, чем исходные данные. При этом средняя рассчитывается по группам данных за определенный интервал времени, причем каждая последующая группа образуется со сдвигом на один год (месяц). В результате подобной операции первоначальные колебания динамического ряда сглаживаются, поэтому и операция называется сглаживанием рядов динамики (основная тенденция развития выражается при этом уже в виде некоторой плавной линии).

Метод скользящей средней называется так потому, что при вычислении средние как бы скользят от одного периода к другому; с каждым новым шагом средняя как бы обновляется, впитывая в себя новую информацию о фактически реализуемом процессе.

Экстраполяция по скользящей средней - может применяться для целей краткосрочного прогнозирования.

Особенность метода экспоненциального сглаживания в том, что в процедуре выравнивания каждого наблюдения используется только значения предыдущих уравнений, взятых с определенным весом. Смысл экспоненциальных средних состоит в нахождении таких средних, в которых влияние прошлых наблюдений затухает по мере удаления от момента, для которого определяется средние.

При составлении прогнозов влияние прошлых наблюдений должно затухать по мере удаления от момента, на который составляется прогноз. Одним из простейших приемов сглаживания динамического ряда с учетом «устаревания» данных является расчет специальных показателей, получивших название экспоненциальных средних, которые широко применяются в краткосрочном прогнозировании. Основная идея метода состоит в использовании в качестве прогноза линейной комбинации прошлых и текущих наблюдений.

Экспоненциальная средняя рассчитывается по формуле:

t = a * yt + (1 - a)* Qt -1 (1)

где Qt - экспоненциальная средняя (сглаженное значение уровня ряда) на момент t;- коэффициент, характеризующий вес текущего наблюдения при расчете экспоненциальной средней (параметр сглаживания), причем 0 < a ≤ 1.

Перейти на страницу: 1 2 3 4 5 6 7 8

Меню сайта